FPI June 2013 (un)
1.

$$
\mathbf{M}=\left(\begin{array}{cc}
x & x-2 \\
3 x-6 & 4 x-11
\end{array}\right)
$$

Given that the matrix \mathbf{M} is singular, find the possible values of x.

$$
\begin{align*}
& \text { Singular } \Rightarrow \text { det }=a d-b c=0 \tag{4}\\
& \Rightarrow x(4 x-11)-(x-2)(3 x-6)=4 x^{2}-11 x-3 x^{2}+12 x-12=0 \\
& =\left(x^{2}+x-12\right)=0 \Rightarrow(x+4)(x-3)=0 \Rightarrow x=3, x=-4
\end{align*}
$$

2.

$$
\mathrm{f}(x)=\cos \left(x^{2}\right)-x+3, \quad 0<x<\pi
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α in the interval $[2.5,3]$.
(b) Use linear interpolation once on the interval $[2.5,3]$ to find an approximation for α, giving your answer to 2 decimal places.
a) $f(2.5)=1.499>0 \quad \therefore$ by sign change law $f(3)=-0.911<0 \quad \alpha \in[2.5,3]$

$$
\text { b) } \left.\begin{array}{rl}
\frac{3-x}{x-2.5} & =\frac{0.911}{1.499} \\
(2.599) \quad 4.497-1.499 x & =0.911 x-2.775 \\
& \Rightarrow 6.7745
\end{array}\right)=2.41 x .
$$

3. Given that $x=\frac{1}{2}$ is a root of the equation

$$
2 x^{3}-9 x^{2}+k x-13=0, \quad k \in \mathbb{R}
$$

find
(a) the value of k,
(b) the other 2 roots of the equation.
a) $f\left(\frac{1}{2}\right)=\frac{1}{4}-\frac{9}{4}+\frac{1}{2} u-13=0 \Rightarrow \frac{1}{2} u=15 \quad \therefore u=30$
b)

$$
\begin{aligned}
& \left(x-\frac{1}{2}\right)\left(2 x^{2}+A x+26\right)=0 \Rightarrow A x^{2}-1 x^{2} \equiv-9 x^{2} \therefore A=-8 \\
& \Rightarrow 2 x^{2}-8 x+26=0 \Rightarrow x^{2}-4 x=-13 \\
& \Rightarrow(x-2)^{2}-4=-13 \Rightarrow(x-2)^{2}=-9 \Rightarrow x-2= \pm 3 i \\
& \therefore x=2+3 i, x=2-3 i
\end{aligned}
$$

4. The rectangular hyperbola H has Cartesian equation $x y=4$

The point $P\left(2 t, \frac{2}{t}\right)$ lies on H, where $t \neq 0$
(a) Show that an equation of the normal to H at the point P is

$$
\begin{equation*}
t y-t^{3} x=2-2 t^{4} \tag{5}
\end{equation*}
$$

The normal to H at the point where $t=-\frac{1}{2}$ meets H again at the point Q.
(b) Find the coordinates of the point Q.

$$
\begin{aligned}
& \text { a) } y=4 x^{-1} \Rightarrow \frac{d u}{d x}=-4 x^{-2}=\frac{-4}{x^{2}} \\
& M t_{x=2 t}=\frac{-4}{(2 t)^{2}}=-\frac{4}{4 t^{2}}=\frac{-1}{t^{2}} \Rightarrow M_{n}=t^{2}
\end{aligned}
$$

at $\left(2 t, \frac{2}{t}\right) \quad y-\frac{2}{t}=t^{2}(x-2 t) \Rightarrow t y-2=t^{3}(x-2 t)$

$$
\Rightarrow t y-2=t^{3} x-2 t^{4} \Rightarrow t y-t^{3} x=2-2 t^{4}
$$

$$
\begin{aligned}
& \text { b) } t=-\frac{1}{2} \Rightarrow-\frac{1}{2} y+\frac{1}{8} x=2-\frac{1}{8} \quad(x 8) \\
& -4 y+x=16-1 \Rightarrow x-4 y=15 \quad x=\frac{4}{y} \\
& \Rightarrow \frac{4}{y}-4 y=15 \Rightarrow 4-4 y^{2}=15 y \Rightarrow 4 y^{2}+15 y-4=0 \\
& \Rightarrow(4 y-1)(y+4)=0 \quad y=+\frac{1}{4}, y=-4 \\
& \therefore\left(16, \frac{1}{4}\right) \quad(-1,-4)
\end{aligned}
$$

5. (a) Use the standard results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^{2}$ to show that

$$
\sum_{r=1}^{n}(r+2)(r+3)=\frac{1}{3} n\left(n^{2}+9 n+26\right)
$$

for all positive integers n.
(b) Hence show that

$$
\sum_{r=n+1}^{3 n}(r+2)(r+3)=\frac{2}{3} n\left(a n^{2}+b n+c\right)
$$

where a, b and c are integers to be found.

$$
\begin{aligned}
& =\sum r^{2}+5 \sum r+6 \sum 1=\frac{1}{6} n(n+1)(2 n+1)+\frac{5 n}{2}(n+1)+6 n \\
& =\frac{1}{6} n[(n+1)(2 n+1)+15(n+1)+36]=\frac{1}{6} n\left[2 n^{2}+3 n+1+15 n+15+36\right] \\
& =\frac{1}{6} n\left[2 n^{2}+18 n+52\right]=\frac{1}{3} n\left[n^{2}+9 n+26\right]
\end{aligned}
$$

b) $\sum_{r=n+1}^{3 n}=\sum_{r=1}^{3 n}-\sum_{r=1}^{n}=\frac{1}{3}(3 n)\left[(3 n)^{2}+9(3 n)+26\right]-\frac{1}{8} n\left[n^{3}+9 n+26\right]$

$$
\begin{aligned}
& =\frac{1}{3} n\left[27 n^{2}+81 n+78-n^{2}-9 n-26\right]=\frac{1}{3} n\left[26 n^{2}+72 n+52\right] \\
& \therefore \quad \frac{2}{3} n\left[13 n^{2}+36 n+26\right] .
\end{aligned}
$$

6. A parabola C has equation $y^{2}=4 a x, \quad a>0$

The points $P\left(a p^{2}, 2 a p\right)$ and $Q\left(a q^{2}, 2 a q\right)$ lie on C, where $p \neq 0, q \neq 0, p \neq q$.
(a) Show that an equation of the tangent to the parabola at P is

$$
\begin{equation*}
p y-x=a p^{2} \tag{4}
\end{equation*}
$$

(b) Write down the equation of the tangent at Q.

The tangent at P meets the tangent at Q at the point R.
(c) Find, in terms of p and q, the coordinates of R, giving your answers in their simplest form.

Given that R lies on the directrix of C,
(d) find the value of $p q$.

$$
\begin{aligned}
& \text { a) } 2 y \frac{d u}{d x}=4 a \Rightarrow \frac{d u}{d x}=\left.\frac{2 a}{y} \quad \therefore M t\right|_{y=2 a p}=\frac{2 a}{2 u p}=\frac{1}{p} \\
& \text { at }\left(a p^{2}, 2 a p\right) \Rightarrow y-2 a p=\frac{1}{p}\left(x-a p^{2}\right) \Rightarrow p y-2 a p^{2}=x-a p^{2} \\
& \therefore p y-x=a p^{2}
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& x=p y-a p^{2}, \quad x=q y-a q^{2} \\
\Rightarrow & p y-a p^{2}=q y-a q^{2} \Rightarrow p y-q y=a p^{2}-a q^{2} \\
\Rightarrow & (p-q) y=a\left(p^{2}-q^{2}\right) \Rightarrow(p-q) y=a(p+q)(p-q) \\
\therefore & y=a(p+q) \quad x=p[a(p+q)]-a p^{2} \\
\Rightarrow & x=a p^{2}+a p q-a p^{2} \Rightarrow x=a p q \quad y=a(p+q)
\end{aligned}
$$

d) along directrix $x=-a \Rightarrow-a=a p q \quad \therefore p q=-1$
7.
(a) Find the exact value of $\left|z_{1}+z_{2}\right|$.

Given that $w=\frac{z_{1} z_{3}}{z_{2}}$,
(b) find w in terms of a and b, giving your answer in the form $x+\mathrm{i} y, \quad x, y \in \mathbb{R}$

Given also that $w=\frac{17}{13}-\frac{7}{13} \mathrm{i}$,
(c) find the value of a and the value of b,
(d) find $\arg w$, giving your answer in radians to 3 decimal places.
a) $|2+3 i+3+2 i|=|5+5 i|=\sqrt{5^{2}+5^{2}}=5 \sqrt{2}$
b) $w=\frac{(2+3 i)(a+b i)}{(3+2 i)} \times \frac{(3-2 i)}{(3-2 i)}=\frac{(12+5 i)(a+b i)}{13}$

$$
w=\frac{12 a-5 b}{13}+\frac{(5 a+12 b) i}{13}
$$

C)

$$
\begin{aligned}
& 12 a-5 b=17(x 12) \quad 144 a-60 b=204 \\
& 5 a+12 b=-7(x 5) \quad \frac{25 a+60 b}{}=-35 \quad 169 a \quad \therefore a=1, b=-1
\end{aligned}
$$

d)

$$
\begin{aligned}
\arg \omega & =-\tan \left(\frac{\frac{7}{13}}{\frac{17}{13}}\right) \\
\therefore \arg \omega & =-0.391^{\circ}
\end{aligned}
$$

8.

$$
A=\left(\begin{array}{cc}
6 & -2 \\
-4 & 1
\end{array}\right)
$$

and \mathbf{I} is the 2×2 identity matrix.
(a) Prove that

$$
\begin{equation*}
\mathbf{A}^{2}=7 \mathbf{A}+2 \mathbf{I} \tag{2}
\end{equation*}
$$

(b) Hence show that

$$
\begin{equation*}
\mathbf{A}^{-1}=\frac{1}{2}(\mathbf{A}-7 \mathbf{I}) \tag{2}
\end{equation*}
$$

The transformation represented by \mathbf{A} maps the point P onto the point Q.
Given that Q has coordinates $(2 k+8,-2 k-5)$, where k is a constant,
(c) find, in terms of k, the coordinates of P.
a)

$$
\begin{aligned}
& A^{2}=\left(\begin{array}{cc}
6 & -2 \\
-4 & 1
\end{array}\right)\left(\begin{array}{cc}
6 & -2 \\
-4 & 1
\end{array}\right)=\left(\begin{array}{cc}
44 & -14 \\
-28 & 9
\end{array}\right) \\
& 7 A+2 I=\left(\begin{array}{cc}
42 & -14 \\
-28 & 7
\end{array}\right)+\left(\begin{array}{cc}
2 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{cc}
44 & -14 \\
-28 & 9
\end{array}\right) \Rightarrow A^{2}=7 A+2 I
\end{aligned}
$$

b) $A^{-1}=-\frac{1}{2}\left(\begin{array}{ll}1 & 2 \\ 4 & 6\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}-1 & -2 \\ -4 & -6\end{array}\right)$
alt

$$
\begin{aligned}
& A A=7 A+2 I \\
& A-7 I=\left(\begin{array}{cc}
6 & -2 \\
-4 & 1
\end{array}\right)-\left(\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right)=\left(\begin{array}{cc}
-1 & -2 \\
-4 & -6
\end{array}\right) \Rightarrow A^{-1} A A=7 A^{-1} A+2 A^{-1} I \\
& \Rightarrow A=7 I+2 A^{-1} \\
& \Rightarrow 2 A^{-1}=A-7 I \\
& \therefore A^{-1}=\frac{1}{2}(A-7 I)
\end{aligned}
$$

$$
\text { c) } \left.A P=Q \Rightarrow\left(\begin{array}{cc}
6 & -2 \\
-4 & 1
\end{array}\right)\binom{x}{y}=\binom{2 k+8}{-2 u-5} \Rightarrow \begin{array}{l}
6 x-2 y=2 u+8 \\
-4 x+y=-2 u-5
\end{array}\right] \begin{aligned}
& \Rightarrow \quad 6 x-2 y=2 u+8 \\
&-8 x+2 y=-4 u-10 \\
&-2 x=-2 u-2
\end{aligned} \quad \begin{array}{ll}
-2 x=-2 u-5+4(u+1) \\
\therefore x=u+1 & y=-2 u-5+4 u+4 \\
\therefore x & y u-1
\end{array}
$$

9. (a) A sequence of numbers is defined by

$$
\begin{aligned}
& u_{1}=8 \\
& u_{n+1}=4 u_{n}-9 n, \quad n \geqslant 1
\end{aligned}
$$

Prove by induction that, for $n \in \mathbb{Z}^{+}$,

$$
\begin{equation*}
u_{n}=4^{n}+3 n+1 \tag{5}
\end{equation*}
$$

(b) Prove by induction that, for $m \in \mathbb{Z}^{+}$,

$$
\left(\begin{array}{ll}
3 & -4 \tag{5}\\
1 & -1
\end{array}\right)^{m}=\left(\begin{array}{cc}
2 m+1 & -4 m \\
m & 1-2 m
\end{array}\right)
$$

$$
\begin{array}{ll}
u_{1}=8 & u_{1}=4^{1}+3(1)+1=8 \\
u_{2}=4(8)-9 \times 1=23 & u_{2}=4^{2}+(3)(2)+1=23
\end{array}
$$

assume true for $n=u \quad \therefore U_{k}=4^{k}+3 k+1$

$$
\left.\begin{array}{rl}
\therefore u_{u+1} & =4^{u+1}+3(u+1)+1=4^{u+1}+3 k+4 \\
u_{u+1} & =4 u k-9 u
\end{array}\right)=4\left(4^{u}+3 u+1\right)-9 k .
$$

\therefore true for $n=1, n=2$; true for $n=u+1$ if true for $n=k$ \therefore by induction, true for ale $n \in \mathbb{L}^{+}$
b) $M=1 \quad\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right)^{\prime}=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right) \quad\left(\begin{array}{cc}2 m+1 & -4 m \\ m & (-2 m\end{array}\right)=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right)$
assume true for $n=u \quad\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right)^{k}=\left(\begin{array}{cc}2 u+1 & -4 k \\ u & 1-2 u\end{array}\right)$

$$
\begin{aligned}
& \left(\begin{array}{rr}
3 & -4 \\
1 & -1
\end{array}\right)^{u+1}<\left(\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right)\left(\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right) u=\left(\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
2 u+1 & -4 u \\
u & 1-2 u
\end{array}\right)=\left(\begin{array}{cc}
2 u+3 & -4 u-4 \\
u+1 & -2 u-1
\end{array}\right) \\
& \left(\begin{array}{rr}
3 & -4 \\
1 & -1
\end{array}\right)^{u+1}=\left(\begin{array}{lr}
2(u+1)+1-4(u+1) \\
(u+1) & 1-2(u+1)
\end{array}\right)=\left(\begin{array}{ll}
2 u+3 & -4 u-4 \\
u+1 & -2 u-1
\end{array}\right) \\
& \therefore \text { true for } m=1 \text {, true } \\
& \text { for } m=u+1 \text { if true } \\
& \text { for } m=u \\
& \therefore \text { by inanition. } \\
& \text { true for all MEI }
\end{aligned}
$$

